#noindex [[복소평면,complex_plane]]에서의 [[선적분,line_integral]].[* [[WpEn:Contour_integration]] 맨 위 "This article is about the line integral in the complex plane."] [[경로,contour]] 위에서 [[복소함수,complex_function]]의 적분.[* 수학백과 첫줄] ---- [[곡선,curve]] 폐곡선 closed curve's orientation: ||positive ||ccw || ||negative ||cw || Def. Let $f$ be defined at points of a smooth curve $C$ defined by $x=x(t),\,y=y(t),\;a\le t\le b.$ The '''contour integral''' of $f$ along $C$ is: $\int_C f(z)dz=\lim_{||P||\to0}\sum_{k=1}^{n} f(z_k^*) \Delta z_k$ (Zill AEM Def 18.1.1) Thm. Evaluation of a Contour Integral If $f$ is continuous on a smooth curve $C$ given by $z(t)=x(t)+iy(t),\;a\le t\le b,$ then: $\int_C f(z)dz=\int_a^b f(z(t))z'(t)dt$ (Zill AEM Thm 18.1.1) = 성질 properties = 다음은 익숙 * ∫,,C,, kf(z)dz= k∫,,C,, f(z)dz * ∫,,C,, (f(z) + g(z))dz = ∫,,C,, f(z)dz + ∫,,C,, g(z)dz * ∫,,C,, f(z)dz = ∫,,C₁,, f(z)dz + ∫,,C₂,, f(z)dz 여기서 C는 매끄러운 곡선 C₁, C₂의 union 다음을 기억 $\int_{-C}f(z)dz=-\int_C f(z)dz$ 여기서 -C는 반대 방향(orientation)을 의미(denote). = thm = [[코시-구르사_정리,Cauchy-Goursat_theorem]] [[유수정리,residue_theorem]] = Misc = 같은 한국어, 다른 영어: 물리학의 [[경로적분,path_integral]] by Richard_Feynman. QM에 해당하는거라 [[https://terms.naver.com/entry.naver?docId=5937873&cid=60217&categoryId=60217 물리학백과: 경로 적분 Path integral]] - 뭔지만 대충 설명하고 수식전개 등 자세히 하지는 않음. [[WpEn:Path_integral]]은 line integral, contour integral과의 혼동을 우려해 disambiguation page로 처리. https://everything2.com/title/path+integral ---- Twins: [[https://terms.naver.com/entry.naver?docId=5668872&ref=y&cid=60207&categoryId=60207 수학백과: 경로적분법]] [[WpKo:경로적분법]] https://planetmath.org/contourintegral https://mathworld.wolfram.com/ContourIntegral.html Up: [[경로,contour]] [[적분,integration]] [[복소해석,complex_analysis]]