#noindex Sub: [[미분계수,differential_coefficient]] [[전미분,total_differential]] and [[전미분,total_derivative]] - 페이지명을 뭐로? [[RR:전미분,total_derivative]] [[RR:전미분,total_differential]]에 있는 내용 옮겨올 것. TODO { // TODO mv from [[RR:전미분,total_differential]] and [[RR:전미분,total_derivative]] } <> = Definition = $y=f(x)$ is a differentiable function. The '''differential''' $dy$ is defined by the equation $dy=f'(x)dx$ where differential $dx$ is an independent variable. Note: $dy$ is a dependent variable; it depends on $x\textrm{ \& }dx.$ = Definition (Thomas) = Let $y=f(x)$ be a differentiable function. The '''differential''' $dx$ is an independent variable. The '''differential''' $dy$ is $dy=f'(x)dx.$ ## Thomas 13e 번역판 2.11 p143 * $dx$ : [[독립변수,independent_variable]] * $dy$ : 항상 $x$ 와 $dx$ 에 의해 결정되는 [[종속변수,dependent_variable]] 즉, $dx$ 의 값이 주어지면 $f$ 의 [[정의역,domain]] 내의 $x$ 값에 의해 $dy$ 값이 결정됨. $dx$ 는 자주 $x$ 의 변화량 $\Delta x$ 로 선택됨. = Definition (Zill) = 디퍼렌셜 $dy$ 는 $dy=y'dx$ 로 정의된다. i.e. $y'=\frac{dy}{dx}$ (Advanced Engineering Math Zill 6e. 26p) = Definition (utk.edu) = Definition. Let $y=f(x)$ be a differentiable function. The differential of $x,\, dx,$ is an independent variable. The differential of $y$ is defined as $dy=f'(x) dx$ ([http://archives.math.utk.edu/visual.calculus/3/differentials.2/index.html]) = Definition (Varberg) = ## (Varberg Calculus p143) Definition Let $y=f(x)$ be a differentiable function of the independent variable $x.$ $\Delta x$ is an arbitrary increment in the independent variable $x.$ $dx,$ called the '''differential of the independent variable''' $x,$ is equal to $\Delta x.$ $\Delta y$ is the actual change in the variable $y$ as $x$ changes from $x$ to $x+\Delta x;$ that is, $\Delta y=f(x+\Delta x)-f(x).$ $dy,$ called the '''differential of the dependent variable''' $y,$ is defined by $dy=f'(x)dx.$ ## p152 ||Derivative Rule ||Differential Rule || ||$\frac{dk}{dx}=0$ ||$dk=0$ || ||$\frac{d(ku)}{dx}=k\frac{du}{dx}$ ||$d(ku)=kdu$ || ||$\frac{d(u+v)}{dx}=\frac{du}{dx}+\frac{dv}{dx}$ ||$d(u+v)=du+dv$ || ||$\frac{d(uv)}{dx}=u\frac{dv}{dx}+v\frac{du}{dx}$ ||$d(uv)=udv+vdu$ || ||$\frac{d(u/v)}{dx}=\frac{u(du/dx)-u(dv/dx)}{v^2}$ ||$d\left(\frac{u}{v}\right)=\frac{vdu-udv}{v^2}$ || ||$\frac{d(u^n)}{dx}=nu^{n-1}\frac{du}{dx}$ ||$d(u^n)=nu^{n-1}du$ || 왼쪽에 $dx$ 를 곱하면 오른쪽 식이 됨을 볼 수 있음 = 부분적분 공식에 나오는 디퍼렌셜 = 곱의 미분법을 Leibniz식으로 써 보면, $\frac{d(uv)}{dx}=\frac{du}{dx}v+u\frac{dv}{dx}$ $dx$ 를 곱하면, $d(uv)=(du)v+u(dv)$ 적분하면, $uv=\int vdu+\int udv$ $\int udv=uv-\int vdu$ 이렇게 [[부분적분,integration_by_parts]] 공식이 나옴 = Examples (misc) = $y=x^2$ 이고 $(x,y)\to(x+dx,y+dy)$ 를 가정, 그럼 $dy/dx$ 는 어떻게 구하는가? $y+dy=(x+dx)^2$ $y+dy=x^2+2xdx+dx^2$ 여기서 $dx^2$ 은 매우 작으므로 무시하고 양변에서 $y=x^2$ 을 cancel한다. 그러면 $dy=2xdx$ $\frac{dy}{dx}=2x$ // http://kocw.net/home/search/kemView.do?kemId=1215229 이종광 20m ---- $x=vy$ $dx=vdy+ydv$ ---- $u=vx$ $u'=v'x+v$ $x$ 로 미분하면 $\frac{du}{dx}=\frac{dv}{dx}x+v$ $du=xdv+vdx=vdx+xdv$ ---- // from 차동우; https://youtu.be/IAIADoy83as?t=246 독립변수가 두 개인 경우 $u=f(x,y)$ $du=f_x(x,y)dx+f_y(x,y)dy$ i.e. $du=\frac{\partial u}{\partial x}dx+\frac{\partial u}{\partial y}dy$ ([[편미분,partial_derivative]]) = 미소~, ~ 미분소, differential length/area/volume/etc. = 기초 calculus에서 중적분(multiple integral)이 나올 때 쓰는 기호는 $dA=dxdy$ $dV=dxdydz$ 라 하고 $\iint_A dA=\iint dydx$ $\iiint_V dV=\iiint_V dzdydx$ 등을 보통 씀. [[푸비니_정리,Fubini_theorem|Fubini's theorem]]에 의해 dx dy dz의 순서를 크게 신경쓰지 않아도 됨. ---- [[좌표계,coordinate_system]]에 따라 달라짐. 미소~ (ex. 미소변위) ~ 미분소 (ex. 선 미분소(differential line), 면적 미분소(differential area), 부피 미분소(differential volume) [* 이 표현들은 여기를 참조했음. https://ghebook.blogspot.com/2011/07/tensor-calculus.html] 체적 미분소(differential volume) $dv(=dxdydz)$ , 면적 미분소(differential surface) $d\bar{a}$ [* https://ghebook.blogspot.com/2010/07/divergence.html] 길이 미분소(length differential) [* https://ghebook.blogspot.com/2011/01/sum-and-difference-identities.html]) 선미분소 : 방향을 가진 매우 작은 선분의 극한 [* https://ghebook.blogspot.com/2010/07/gradient.html "선 미분소"] $d\bar{l}=dx\hat{x}+dy\hat{y}+dz\hat{z}$ 극좌표계, 원통좌표계의 미소면적/미소부피는 [[극좌표계,polar_coordinate_system]] 참조 구면좌표계의 경우는 [[https://freshrimpsushi.tistory.com/1753 구좌표계에서의 미소부피]] 참조 ---- (Ulaby: CHK, CLEANUP 특히 r, R을 각각 rho, r로 잘 바꾸었는지 check) (rectangular coord system) differential surface area: $d\vec{s}$ differential length: $dl_x, dl_y, dl_z$ $d\vec{\ell}$ $=\hat{x}dl_x+\hat{y}dl_y+\hat{z}dl_z$ $=\hat{x}dx+\hat{y}dy+\hat{z}dz$ differential area in the y-z plane: $d\vec{s_x}=\hat{x}dl_y dl_z=\hat{x}dydz$ x-z plane: $d\vec{s_y}=\hat{y}dxdz$ x-y plane: $d\vec{s_z}=\hat{z}dxdy$ ---- (cyl. coord system) differential volume elements...........? differential lengths along $\rho, \phi, z$ : $dl_{\rho}=d\rho$ $dl_{\phi}=rd\phi$ $dl_z=dz$ differential length: $d\vec{\ell}$ $=\hat{\rho}dl_{\rho}+\hat{\phi}dl_{\phi}+\hat{z}dl_z$ $=\hat{\rho}d\rho+\hat{\phi}\rho d\phi + \hat{z}dz$ differential surface area: $d\vec{s_{\rho}}=\hat{\rho}dl_{\phi}dl_z=\hat{\rho}\rho d\phi dz$ (φ-z cylindrical surface), $d\vec{s_{\phi}}=\hat{\phi}dl_{\rho}dl_z=\hat{\phi}d\rho dz$ (ρ-z plane), $d\vec{s_z}=\hat{z}dl_{\rho}dl_{\phi}=\hat{z}\rho d\rho d\phi$ (ρ-φ plane). differential volume: $dv=dl_{\rho}dl_{\phi}dl_z=\rho d\rho d\phi dz$ 이상 완벽하게 r->rho 바꾸었는지 모르겠음 ---- (sph. coordinate system) differential length $d\vec{\ell}$ $=\hat{r} dl_r + \hat{\theta}dl_{\theta} + \hat{\phi}dl_{\phi}$ $=\hat{r}dr + \hat{\theta}rd\theta + \hat{\phi}r\sin\theta d\phi$ vector differential surface $d\vec{s}$ $d\vec{s_r}$ $=\hat{r}dl_{\theta}dl_{\phi}$ $=\hat{r}r^2\sin\theta d\theta d\phi$ (θ-φ spherical surface), $d\vec{s_{\theta}}$ $=\hat{\theta} dl_{r} dl_{\phi}$ $=\hat{\theta} r \sin\theta dr d\phi$ (r-φ conical surface), $d\vec{s_{\phi}}$ $=\hat{\phi} dl_r dl_{\theta}$ $=\hat{\phi} r dr d\theta$ (r-θ plane) differential volume $dv$ $dv=dl_r dl_{\theta} dl_{\phi} = r^2 \sin\theta dr d\theta d\phi$ (이상 완벽하게 R->r 바꾸었는지 chk) (이상 Ulaby 5e, 틀린지 chk) 이하 == Cartesian, differential length == $\vec{dl}=dx\hat{x}+dy\hat{y}+dz\hat{z}$ for [[선적분,line_integral]] of vector fields == Cartesian, differential volume == $dv=dxdydz$ for [[체적적분,volume_integral]] of vector fields == Cartesian, differential surface == $\vec{ds_1}=\hat{n}ds_1$ where $\hat{n}=\hat{z},\; ds_1=dxdy,\; \vec{ds_1}=\hat{z}dxdy$ $\vec{ds_2}=\hat{y}dxdz$ for [[면적분,surface_integral]] of vector fields ## Cyli, Sphe는 기호 마에 안들어 skip ## 이상 홍대 전자기학 slides == 미분전하 differential charge == see [[전하밀도,charge_density#s-1]] = Subdifferential = [[subdifferential]] curr at Srch:subgradient = Links = 삼각함수의 미분 d(sinθ)등에 대한 동영상 (차동우) https://www.youtube.com/watch?v=aucbh027j70 $d(\sin\theta)=\cos\theta d\theta$ $d(\cos\theta)=-\sin\theta d\theta$ $\sin(d\theta)=d\theta$ $\cos(d\theta)=1$ = Calculus Made Easy №15(장?) = $y=\sin\theta$ 인데 $\frac{d(\sin\theta)}{d\theta}$ 를 investigate. $y+dy=\sin(\theta+d\theta)$ $dy=\sin(\theta+d\theta)-\sin\theta$ 우변은 $\sin M-\sin N=2\cos\frac{M+N}{2}\sin\frac{M-N}{2}$ 식에 따라 변형하고, $M=\theta+d\theta,\,N=\theta$ 이면 $dy=2\cos\frac{\theta+d\theta+\theta}{2}\sin\frac{\theta+d\theta-\theta}{2}$ $dy=2\cos\left(\theta+\frac12d\theta\right)\sin\left(\frac12 d\theta\right)$ 여기서 $d\theta$ 를 indefinitely small하다고 regard하면, $\theta$ 와 비교해 $\frac12d\theta$ 를 무시할 수 있고, $\sin\left(\frac12 d\theta\right)$ 를 $\frac12d\theta$ 와 같다고 볼 수 있다. 그러면 $dy=2\cos\theta\cdot\frac12d\theta$ $dy=\cos\theta\cdot d\theta$ $\frac{dy}{d\theta}=\cos\theta$ 다음에는 [[코사인,cosine]]의 미분. $y=\cos\theta$ $\cos\theta=\sin\left(\frac{\pi}{2}-\theta)$ 따라서 $dy=d\left(\sin\left(\frac{\pi}{2}-\theta\right)\right)$ $=\cos\left(\frac{\pi}{2}-\theta\right)\times d(-\theta)$ $=\cos\left(\frac{\pi}{2}-\theta\right)\times(-d\theta)$ $\frac{dy}{d\theta}=-\cos\left(\frac{\pi}{2}-\theta\right)$ $\frac{dy}{d\theta}=-\sin\theta$ 이어서 [[탄젠트,tangent]], 이계미분 나오는데 생략. = 궁금 QQQ = https://ghebook.blogspot.com/2013/04/equation-of-circle.html 에 의하면 $xdx+ydy=0$ Google:"xdx+ydy=0" = 기타 = Sub: [[완전미분,exact_differential]] { https://en.wikipedia.org/wiki/Exact_differential 완전미분이 없으면 불완전미분(inexact differential) [[RR:완전미분exact_differential]] } 완전미분방정식exact de [[RR:완전미방exact_DE]] [[미분형식,differential_form]] [[선형근사,linear_approximation]]와 밀접한데 관계 적을 것 TBW ---- AKA '''미분소(素), 디퍼렌셜''' Compare: [[미분,derivative]] (도함수) [[미분,differentiation]] (도함수를 찾는 것) [[무한소,infinitesimal]] - 비슷? 차분(difference) - see [[차이,difference]] Up: [[미적분,calculus]] Sub: [[미분방정식,differential_equation]] [[미분연산자,differentiation_operator]] (curr at RR 미분연산자,differentiation_operator ) [[전미분,total_differential]] [[Kaehler_differential]] =,Kaehler_differential . Kaehler_differential <- German umlaut transliteration을 찾아보면 (ä → ae)라서 pagename 이렇게 해야 할 듯 한데, chk { '''Kähler differential''' https://ko.wikipedia.org/wiki/켈러_미분 https://en.wikipedia.org/wiki/Kähler_differential https://ja.wikipedia.org/wiki/ケーラー微分 https://ncatlab.org/nlab/show/Kähler+differential ... "Kähler differential" Naver:"Kähler differential" Ggl:"Kähler differential" } See also [[디퍼렌셜예제가있는페이지]] Related: Compare: [[차이,difference]](=차분) ---- Twins: RR: 미분,differential https://ncatlab.org/nlab/show/differential (hard)