AKA '''Einstein summation convention'''??? 같은건가 sub인가? ''[[Date(2022-02-18T02:54:22)]] summation convention 이 더 나은 pagename?'' Chasnov https://youtu.be/CWIaPrwLyjM?si=T8or3V_5-92PhnLY Ex. $\sum_{i=1}^3\delta_{ii}\equiv\delta_{ii}=3$ $\epsilon_{ijk}\epsilon_{ijk}=\epsilon_{123}\epsilon_{123}+\cdots=6$ $\epsilon_{ijk}\epsilon_{lmn}=\begin{vmatrix}\delta_{il}&\delta_{im}&\delta_{in}\\\delta_{jl}&\delta_{jm}&\delta_{jn}\\\delta_{kl}&\delta_{km}&\delta_{kn}\end{vmatrix}$ $\vec{A}\cdot\vec{B}=A_iB_i$ $(\vec{A}\times\vec{B})_i = \epsilon_{ijk} A_j B_k$ $\begin{align}(\vec{A}\times\vec{B})_1 &= \epsilon_{1jk} A_j B_k \\ &= \epsilon_{123}A_2B_3 + \epsilon_{132}A_3B_2 \\ &= A_2B_3-A_3B_2\end{align}$ MKL [[크로네커_델타,Kronecker_delta]] [[레비치비타_기호,Levi-Civita_symbol]] ---- MKL [[합,sum]] (curr goto [[덧셈,addition]]) Google:einstein.notation Google:einstein.convention = LCY = ex. 일단 전제는 $\vec{A}=iA_x+jA_y+kA_z$ $\vec{A}=(A_x,A_y,A_z)$ $\partial_x\equiv\frac{\partial}{\partial x}$ $\vec{\nabla}=\hat{i}\partial_x+\hat{j}\partial_y+\hat{k}\partial_z$ $\vec{\nabla}=(\partial_x,\partial_y,\partial_z)$ $\vec{A}{}_j$ 는 A의 j번째 성분???? 이하 파란색이 아인슈타인 표기법으로 표기된 것 [[내적,inner_product]] $\vec{A}\cdot\vec{B}=A_xB_x+A_yB_y+A_zB_z=\sum_{i=1}^3 A_iB_i$ $\color{blue}=A_i B_i$ [[기울기,gradient]]관련하여 $\vec{\nabla}\phi(x,y,z)=\hat{i}\partial_x\phi+\hat{j}\partial_y\phi+\hat{k}\partial_z\phi$ $\blue{=\hat{e_i}\partial_i \phi}$ e-hat 표기법은 모르겠는데... [[레비치비타_기호,Levi-Civita_symbol]]의 "벡터곱,vector_product,cross_product에 사용된다는데" 에서 유추해야 [[발산,divergence]]관련하여 $\vec{\nabla}\cdot\vec{A}=\partial_xA_x+\partial_yA_y+\partial_zA_z$ $\blue =\partial_i A_i$ [[회전,curl]] $\vec{\nabla}\times\vec{A}=\begin{vmatrix}i&j&k\\ \partial_x&\partial_y&\partial_z \\ A_x&A_y&A_z \end{vmatrix}$ $\blue =\hat{e_i}\epsilon_{ijk}\partial_j A_k$ [[삼중곱,triple_product]] $\nabla\cdot(\vec{A}\times\vec{B})=\vec{B}\cdot(\nabla\times\vec{A})-\vec{A}\cdot(\nabla\times\vec{B})$ $=\partial_i(\vec{A}\times\vec{B})_i$ $=\partial_i(\epsilon_{ijk}A_jB_k)$ $=\epsilon_{ijk}\partial_i(A_jB_k)$ $=\epsilon_{ijk}\left[(\partial_iA_j)B_k+A_j(\partial_iB_k)\right]$ $=(\epsilon_{ijk} \partial_i A_j)B_k+A_j(\epsilon_{ijk} \partial_i B_k)$ $=(\nabla\times\vec{A})_k + A_j (-\epsilon_{jik}\partial_i B_k)$ $=(\nabla\times\vec{A})_k + A_j(-(\nabla\times\vec{B})_j)$ $=(\nabla\times\vec{A})\cdot\vec{B}-\vec{A}\cdot(\nabla\times\vec{B})$ $\nabla\times(\vec{A}\times\vec{B})$ $=\hat{e_i}\epsilon_{ijk}\partial_j(\vec{A}\times\vec{B})_k$ $=\hat{e_i}\epsilon_{ijk}\partial_j(\epsilon_{kij}A_iB_j)$ i, j, k는 dummy index이다. $($ 의 왼쪽 ijk와 오른쪽 ijk는 다른 것. $=\hat{e_i}\epsilon_{ijk}\partial_j(\epsilon_{klm}A_lB_m)$ $=\hat{e_i}\epsilon_{ijk}\epsilon_{klm}\partial_j(A_lB_m)$ 여기서 $\epsilon_{ijk}\epsilon_{klm}$ $=\epsilon_{kij}\epsilon_{klm}$ $=\delta_{il}\delta_{jm}-\delta_{im}\delta_{jl}$ 나머지는 H/W라고. 이상 CHK [[http://www.kocw.net/home/search/kemView.do?kemId=1269801 src 이창영]]1강 ---- Related: [[크로네커_델타,Kronecker_delta]] [[레비치비타_기호,Levi-Civita_symbol]] [[벡터,vector]] [[행렬,matrix]] matrix_multiplication [[대각합,trace]] [[텐서,tensor]] [[내적,inner_product]] [[스칼라곱,scalar_product,dot_product]] [[외적,outer_product]] [[벡터곱,vector_product,cross_product]] 첨자 위첨자superscript 아래첨자subscript Twins: https://mathworld.wolfram.com/EinsteinSummation.html https://freshrimpsushi.github.io/posts/einstein-notation/ https://planetmath.org/einsteinsummationconvention [[WpEn:Einstein_notation]] [[WpKo:아인슈타인_표기법]] chk https://everything2.com/title/summation+convention ---- Up: [[표기법,notation]]