#noindex 함수 $f$ 가 단순 닫힌 경로 $C$ 와 그 안쪽의 모든 점에서 해석적이면 다음이 성립한다. [* https://dreamlab1.tistory.com/m/182] $\int_C f(z)dz=0$ ---- Cauchy-Goursat Theorem ● If $f$ is analytic in a simply connected domain $D,$ for every simple closed contour $C$ in $D$ $\oint_C f(z)dz=0$ or ● If $f$ is analytic at all points within and on a simple closed contour $C,$ then $\oint_C f(z)dz=0$ (Beelee) ---- '''Cauchy's Theorem''' (1825) Suppose that a function $f$ is analytic in a simply connected domain $D$ and that $f'$ is continuous in $D.$ Then for every simple closed contour $C$ in $D:$ $\oint_C f(z)dz=0$ '''Cauchy-Goursat Theorem''' (1883) $f'$ 의 연속성을 가정하지 않고도 코시 정리가 성립함을 증명. Suppose a function $f$ is analytic in a simply connected domain $D.$ Then for every simple closed contour $C$ in $D:$ $\oint_C f(z)dz=0$ If $f$ is analytic at all points within and on a simple closed contour $C,$ then $\oint_C f(z)dz=0.$ (Zill AEM 18.2) ---- = Related = [[경로적분,contour_integral]] [[복소해석,complex_analysis]]학의 중요한 정리임. = Twins = 복소해석에서의 코시 정리 증명 Proof of Cauchy's Theorem https://freshrimpsushi.github.io/posts/proof-of-cauchys-theorem/ http://blog.naver.com/freshmeat/91343548 "코시 구르사 정리" Ndict:"코시 구르사 정리" Google:"코시 구르사 정리" ---- Up: [[복소해석,complex_analysis]] [[정리,theorem]]