보렐_집합,Borel_set

보렐_집합,Borel_set (rev. 1.20)

보렐 집합, Borel set

//wpko
"열린집합,open_set들로부터 가산 합집합 · 가산 교집합 · 차집합 연산을 가산 번 반복하여 만들 수 있는 집합"
i.e.
보렐 집합은 열린집합,open_set들로부터 가산(? 집합내 원소 개수가 가산? or 합집합들의 개수가 가산? or 연산이 가산 번?) 합집합,union · 가산 교집합,intersection · 차집합,set_difference 연산을 가산 번 반복하여 만들 수 있는 집합. (차집합에는 가산이 안 붙은 이유?)

//mathworld
보렐_시그마대수,Borel_sigma-algebra의 원소.
"Roughly speaking, Borel sets are the sets that can be constructed
from open or closed sets
by repeatedly taking countable unions and intersections"

//from 두산백과
시그마대수,sigma-algebra B가 정의된 공간 X를 가측공간,measurable_space(또는 보렐_공간,Borel_space)이라 하는데, B에 속한 집합을 (X, B)의 B-가측집합,measurable_set(또는 B-보렐 집합)이라 부른다. (이하생략)

//from wpen
다음 조건을 만족하는 위상공간,topological_space 안의 임의의 집합.
열린집합,open_sets(or, equivalently, from 닫힌집합,closed_sets)으로부터 다음 연산,operations:
countable_union //countable은 uncountable의 반대? discrete? - wpko 보니 가산집합,countable_set WpKo:가산_집합으로 링크 걸려있음.
countable_intersection
relative_complement (= 차집합,difference)
을 해서 얻어지는(formed) 집합.


CHK
{
보렐 집합은 보렐 대수의 원소.


del ok
{
Borel system of sets, family of Borel sets
https://encyclopediaofmath.org/wiki/Borel_system_of_sets

Borel field of sets, family of Borel sets
https://encyclopediaofmath.org/wiki/Borel_field_of_sets
}




QQQ 시그마대수,sigma-algebra중에서 특정한 일부가 Borel algebra(Borel σ-algebra)인건가? chk


AKA Borel-measurable set(Ency. of math)
AKA Borel subset (nLab)

Twins:
[https]수학백과: 보렐 집합
[https]두산백과: 보렐집합
https://mathworld.wolfram.com/BorelSet.html
https://encyclopediaofmath.org/wiki/Borel_set
https://ncatlab.org/nlab/show/Borel subset
"Borel sets are certain subsets of a topological space. They form the Borel σ-algebra of the space, and they play an important role in measure theory."
(대충번역) 보렐 집합은 한 위상공간,topological_space의 어떤 특정한(여기서 certain이 '확실한'은 아닐듯?) 부분집합,subset이다. 공간,space보렐_시그마대수,Borel_sigma-algebra(=보렐_대수,Borel_algebra? rel. 시그마대수,sigma-algebra)를 이루며, 측도론에서 중요한 역할을 한다.
WpEn:Borel_set
WpKo:보렐_집합
https://freshrimpsushi.github.io/posts/borel-set/


Up: 집합,set 측도론(측도,measure)