부분적분,integration_by_parts

Difference between r1.1 and the current

@@ -1,10 +1,17 @@
'''''이거 VG의 pagename rule에 어긋나는데, 어떻게 바꿀까 TBD'''''
----
$\int f(x)g^{\prime}(x)dx=f(x)g(x)-\int f^{\prime}(x)g(x)dx$
$\int_a^b f(x)g'(x)dx=\left[f(x)g(x)\right]_a^b-\int_a^b f'(x)g(x)dx$

$\int uv'dx= uv-\int u'v dx$
(Kreyszig 10e p. 3)
$\int udv=uv-\int vdu$
∵ $f(x)=u,\;g(x)=v$

LIATE rule

----

@@ -21,14 +28,44 @@
$dv=g^{\prime}(x)dx$
이렇게 된다.
$\int udv=uv-\int vdu$
Q: [[미분,differential]]관련 맞지? 디퍼렌셜 해석하는 법을 잘 모르겠어서 이 식도 잘 이해가 안 된다...

https://en.wikipedia.org/wiki/Integration_by_parts
http://mathworld.wolfram.com/IntegrationbyParts.html
[[미분,differential]]관련.

도표적분 tabular integration
= 도표적분 tabular integration =
부분적분의 방법 중 하나.
특정한 조건에서 $\int f(x)g(x)dx$ 를 쉽게 계산하는 트릭.
계속 미분가능하고 결국 0이 되는 것을 $f(x),$ 계속 적분가능한 것을 $g(x)$ 로 두고
(임시 기호: f´´는 f를 두번 미분한 것, ∫∫∫f는 f를 세번 적분한 것)
이런 표를 그린 다음
||f ||g ||
||f´ ||∫g ||
||f´´ ||∫∫g ||
||f´´´ ||∫∫∫g ||
||f´´´´ ||∫∫∫∫g ||
||$\vdots$ ||$\vdots$ ||
||0 ||? ||
↘방향으로 두개씩 곱한 것을, 부호를 +부터 시작해 번갈아가며 적음. 그러면
∫fg =
+ f ∫g
- f´ ∫∫g
+ f´´ ∫∫∫g
- f´´´ ∫∫∫∫g + ... + C
TBW: 중간에 끝내는 거 어떻게 하는지 정확히 서술
CHK
https://everything2.com/title/Tabular+Integration
밑에 e2의 integration+by+parts 도 참조.

----
Up: [[적분,integration]]
WpEn:Integration_by_parts
http://mathworld.wolfram.com/IntegrationbyParts.html
https://everything2.com/title/integration+by+parts
https://planetmath.org/integrationbyparts
WpKo:부분_적분

----
Up: [[적분,integration]]



이거 VG의 pagename rule에 어긋나는데, 어떻게 바꿀까 TBD

$\int f(x)g^{\prime}(x)dx=f(x)g(x)-\int f^{\prime}(x)g(x)dx$
$\int_a^b f(x)g'(x)dx=\left[f(x)g(x)\right]_a^b-\int_a^b f'(x)g(x)dx$

$\int uv'dx= uv-\int u'v dx$
(Kreyszig 10e p. 3)

$\int udv=uv-\int vdu$
$f(x)=u,\;g(x)=v$

LIATE rule





곱의 미분법은 다음과 같다.
$(f(x)g(x))^{\prime}=f^{\prime}(x)g(x)+f(x)g^{\prime}(x)$
양변을 적분하면
$f(x)g(x)=\int f^{\prime}(x)g(x)dx+\int f(x)g^{\prime}(x)dx$
따라서
$\int f(x)g^{\prime}(x)dx=f(x)g(x)-\int f^{\prime}(x)g(x)dx$
참고로, 다음과 같이 치환하면
$u=f(x)$
$du=f^{\prime}(x)dx$
$v=g(x)$
$dv=g^{\prime}(x)dx$
이렇게 된다.
$\int udv=uv-\int vdu$

미분,differential관련.

도표적분 tabular integration

부분적분의 방법 중 하나.
특정한 조건에서 $\int f(x)g(x)dx$ 를 쉽게 계산하는 트릭.
계속 미분가능하고 결국 0이 되는 것을 $f(x),$ 계속 적분가능한 것을 $g(x)$ 로 두고

(임시 기호: f´´는 f를 두번 미분한 것, ∫∫∫f는 f를 세번 적분한 것)
이런 표를 그린 다음
f g
∫g
f´´ ∫∫g
f´´´ ∫∫∫g
f´´´´ ∫∫∫∫g
$\vdots$ $\vdots$
0 ?
↘방향으로 두개씩 곱한 것을, 부호를 +부터 시작해 번갈아가며 적음. 그러면
∫fg =
+ f ∫g
- f´ ∫∫g
+ f´´ ∫∫∫g
- f´´´ ∫∫∫∫g + ... + C

TBW: 중간에 끝내는 거 어떻게 하는지 정확히 서술

CHK

https://everything2.com/title/Tabular Integration
밑에 e2의 integration+by+parts 도 참조.